F. 不在最短路中的边

    传统题 1000ms 256MiB

不在最短路中的边

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

题目描述

给定一个无向连通图,图中没有重边与自环。

请找出不包含在任何一对不同顶点之间的最短路径中的边的数目。

输入格式

第一行包含两个整数 nnmm,表示图的顶点数和边数。$(1\le n\le 100,1\le m\le \min{(\dfrac {n\times (n-1))}{2},1000})$

接下来 mm 行,每行包含两个整数 a,b,ca,b,c,表示顶点 aa 和顶点 bb 之间存在一条边,边的长度为 cc(1a,bn,1c1000)(1\le a,b\le n,1\le c\le 1000)

输出格式

输出一行一个整数,表示不包含在任何一对不同顶点之间的最短路径中的边的数目。

样例输入1

3 3
1 2 1
1 3 1
2 3 3

样例输出1

1

样例输入2

4 6
1 4 7
2 3 2
3 4 4
1 3 6
2 4 5
1 2 2 

样例输出2

1

说明

样例解释

对于样例 22

131\Leftrightarrow 3 这一条长度为 66 的边不在任意两点的最短路中。

图片描述

CSP-J/S 公开训练(第二场)

未参加
状态
已结束
规则
IOI
题目
6
开始于
2025-7-4 20:00
结束于
2025-7-14 0:00
持续时间
220 小时
主持人
参赛人数
16